68 Best Home Base Business Lead

Home Base Business Lead:  As a side effect of our time in Home Base Business Lead for the Future Makers.

I had a lot of opportunities to observe how business is done and, especially,

where business is not done but could perhaps be done.

This means a lot of business ideas came to my mind.

Some will be crazy, some will be worthless, but some will fit.

Since I don’t know which is which, Home Base Business Lead.

I have to leave it to people who are experts in the Business environment to sort them.

I’ll just drop my whole list of ideas here, and you can do whatever you want with it.

Most (but not all!) of the ideas have some original innovative element in them

(means you won’t find the exact same idea published somewhere else.) Happy entrepreneurs.

Home Base Business Lead

See also: 17 Tips to Build-up Gorgeous Business

(1) Low-cost off-grid electricity system for villages

This is a business opportunity for a small manufacturing business.

The product is an off-grid electricity system for the unserved low-end part of the market.

At a sales price of 50-70 USD, it will provide lighting, phone charging, and operating a TV or computer.

It can be so cheap because it does not include an inverter –

It is not needed because essential electrical devices

(LED lighting, computer, phone chargers) work with 12 V DC directly or via a DC-DC converter.

The kit needs a small photovoltaics plant to function in villages without an electrical grid.

It would be made out of:

  • a discarded 12 V lead-acid car battery; it may not have the current-carrying capability needed to jumpstart a car (needs ca. 1000-2000 W), but can still be fully sufficient for lower-power consumers (we need ca. 50 W)
  • a solar charge controller
  • 3 LED bulbs for lighting, 12 V DC, 3-4 W each
  • an adjustable DC-DC converter with various tips, able to power a notebook or an LCD TV screen (only TV models that come with their own external AC adapter though, since that can be replaced with our DC-DC adapter)
  • wires and switches

Home Base Business Lead

(2) Neighborhood composting and Biogas businesses

The concept of backyard composting is well-known around cities in Nepal and was practiced by many until getting used to urban trash collection.

Currently, the idea is a hard sell (even though organizations provide ready-made vermicomposting bins for cheap) since people see little reason to get back to this.

However, composting could work as a business idea by operating it as a neighborhood-scale plant.

Then, it can even be combined with anaerobic digestion as a first step,

Producing biogas cooking fuel.

This might be better adapted for an urban setting than expecting everyone to add biodigesters to their roof for producing their own biogas.

A compact, odor-proof plant design is needed that can work in a neighborhood-level plant,

Producing both biogases for the neighborhood and fertile soil for the local area.

The biogas would be delivered in regular LPG cylinders at 20 bars (well within the ratings of these cylinders).

One such biogas cylinder lasts about one day,

So when getting a delivery of 3 cylinders twice a week it could be acceptable,

Esp. since the distance to the production site would only be a few hundred meters.

It’s not that comfortable, but not much more uncomfortable than needing a 20 l drinking water container every second day.

Business model: in exchange for separating and contributing kitchen scraps,

People would get the biogas fuel at a discounted rate (say, 700 NRs per month for a family, which is about half the normal LPG costs).

In addition, compost is sold to local gardeners and in truckloads to farms around the city.

(3) Novel products from plastic trash

Nearly all plastic trash is currently landfilled in Kathmandu (and probably in all other cities in Nepal),

But there are quite some ways to use it as a raw material in small businesses.

The Precious Plastic project provides several tested designs for open-source machines to build by oneself for manufacturing products from recycled plastics in small workshops.

Product ideas include:

  • Road topping, construction, and flooring blocks made from gravel and scrap plastic: The technique was developed by Prof. R. Vasudevan in India and is called “plastome”, see here. Among other things, this is a great material for covering roads to villages, since laying it and repairing it does not require heavy/specialized machinery. Road pavement blocks would ideally be interlocking. These blocks can be produced from unsorted, mixed trash plastic trash.
  • Waterproof cover material: When poured hot on-site rather than into blocks, the “plastome” material referred to above can be used as a waterproof material for covering foundations, as protective wall plastering (needs a way to apply it hot on vertical surfaces of course), and as a replacement for blacktopping roads.
  • Upcycling PET plastic bottles: For example, they could be made into transparent roof tiles for greenhouses (or like here). In rural areas, windows and roofs for houses can also be made from this. Also, there are nice simple inventions to make rope from PET bottles, like here. Similarly, wider stripes of PET bottles can be woven into baskets, etc. Machine designs and processes should be put into DIY manuals.
  • Injection molding from scrap plastic: By sorting plastic by kind (and optionally color) and making plastic granules from it, one has the raw material for DIY injection molding. There are several designs for DIY injection molding machines, the challenge is usually creating the molds. However, the artisan metal casters in Patan can help to create the two halves of the negative form. Either they would model the halves in wax first and cast them with their usual lost wax technique separately, or (much simpler) they can simply create the intended plastic object in clay, dry it, then dip it into a pot of liquid aluminum, and cut the cooled-down metal block in half to get the two halves of the mold. Then, people can produce many kinds of (simple at first) plastic items in a small shop. Like containers, furniture parts, and large corrugated plastic sheets to use for roofing in villages instead of zinc sheets. A DIY plastic casting industry seems like an interesting thing to research the processes and tech for. For example, for sorting the plastic, low-tech ways to identify them fast and reliably have to be found.
  • Plastic boxes from scrap plastic: They would be made from 2-3 mm sheet material made from scrap plastic, and combined with stacking corners and edge elements made from plastic by injection molding, or from aluminum by metal casting. For cost reduction, re-usable aluminum molds made from steel or ceramics would be used. These boxes would be superior to the ones currently made from thin zinc-coated steel sheets (as used for roofing but flat) in some workshops in Kathmandu. A major application would be rooftop boxes on jeeps and buses for carrying loads.
  • Plastic shingles for roofing and wall covering: These would be used for roofing and wall covering, and made from plastic sheet material in sizes of ca. 20×30 cm. In contrast to the usual large plastic sheets used for roofs and walls, these are much simpler to DIY produce from scrap plastic. When made from transparent plastic-like PET bottles, the shingles are also good for light inlets (not windows for living areas of course) and for greenhouses.
  • Blocks from scrap plastic: Solid plastic blocks are a great raw material for further products since they are sturdy, weatherproof, and simple to machine. Any woodworking tool, an improvised lathe, or a simple DIY CNC mill will do. There are multiple how-tos for making plastic blocks from scrap plastic at home (like here and here), and such a process would have to be upscaled to a small business setting. Then one small company could collect, clean, and sort the plastic trash, another one would buy it and make plastic blocks, and others would buy the blocks to produce things.
  • 3D printing workshop using scrap plastic: While industrial injection molding needs quite some effort and production volume because of the required molds, 3D printers can produce small quantities economically and can likewise use scrap plastic. This can be imagined as a business idea: a workshop with 10 or more open-source 3D printers (like the RepRap series), printing parts for customers all day, plus some Filabot type machines that produce the required filament from scrap plastic.
  • Making wall insulation material from scrap plastic: Insulation will reduce heating fuel needs – relevant for Kathmandu Valley, but more so in the higher-up hilly area. Insulation material from scrap plastic is simply thin fibers extruded from heated plastic and formed into wooly panels, similar to Rockwool / glass wool panels.

See also: 17 Tips to Start Gorgeous Business 

Home Base Business Lead

(4) Rooftop farming

This could be big in Kathmandu since rooftops are unused space for most of the day.

They provide plenty of sunlight, water in a water tank, a waterproof clean strong floor,

And usually access with an outside staircase.

The plants would even make the rooftop more beautiful, cool it in the summer,

And thus also make the city greener and cooler when this idea would spread.

The “landless urban farmers” would rent access to multiple rooftops in the same city area,

And visit them regularly to grow things there, using high-yield urban farming techniques a similar “distributed urban farm” concept in Canada is demonstrated here.

Another set of small businesses would provide equipment for this,

Including soil (from backyard composting),

Waterproof planting boxes (welded from plastic sheets made from trash plastic),

Supports (from scrap wood, for raised bed gardening), and drip irrigation equipment.

(5) Neighborhood “total recycling” sites

Trash is quite a DIY resource and can be recycled to over 95% with DIY techniques on small scales.

Would also work in Kathmandu: here, solid waste is 63% organic, 11% plastic, 9% paper, 5% glass, 12% other.

The organic part would be converted to biogas and compost in the household

Or a neighborhood-level plant, which is the most DIY part.

Leaves about 36% for collection.

Trash should not be concentrated too much for processing it –

Too much in one spot means bad smells and health hazards.

Proposal: a neighborhood-level site that fine-sorts and safely recycles the remaining 36% of waste, also being a business opportunity.

Users would get special cans to separate the trash in the household

(since trash sorting is the worst work ever when done later).

Products of the recycling plant would be plastic granules,

Salvaged half-finished products from metal, aluminum shreds, and ingots

(e.g. for aluminium casting in Patan), steel pieces for recycling, paper shreds to go to paper recycling plants,

And glass, to also go to recycling.

Since waste management in Kathmandu is still largely done by private companies,

It should be possible to be another one of these companies,

Providing waste disposal to households for much cheaper fees than the others due to converting it to resources.

For a great example of community-driven full recycling, see Japan’s Kamikatsu city.

(6) DIY washing machine and detergents

Seems many poorer people wash by hand in Kathmandu.

Also, when using photovoltaics off-grid electricity, one cannot operate a household washing machine.

But there are alternatives, incl. cheaper DIY recipes for the detergents.

My colleague Natalia mentions for example that soap nuts are produced in Nepal –

It’s a great natural detergent, and it seems not in widespread use at least in urban areas.

(7) DIY low-energy fridge

Uninterrupted cold storage is a problem even in houses with backup electricity,

Since the inverter is often not powerful enough for starting a compressor fridge.

This fridge should work with an off-grid photovoltaics setup,

Use extremely little energy, and be cheap and DIY.

Something like the Australian evaporation coolers maybe?

(8) DIY recirculating shower

A major way to save energy and water.

There is Showerloop as an open-source design,

And it should be possible to modify it to 20% of the cost (ca. 120 USD then) or less.

(9) Lead-acid battery recycling

Recycling automotive and grid-backup lead-acid batteries is possible in a DIY process.

It can include

(1) use of special substances (like EDTA) that can revitalize nearly worn-down batteries,

(2) making new batteries from working cells of broken ones,

(3) exchanging or even recasting the lead plates to repair cells.

The products will be well used as photovoltaics batteries,

While cars and trucks should better get new ones.

But since lead is toxic and the acid is not harmless either, this is a bit difficult to do in a safe way.

Probably not done in Nepal at the moment (?) since the techniques are not well-known,

So it offers a business opportunity for small-scale manufacturing.

Home Base Business Lead

(10) Innovative basketry

Basketry is practiced a lot in Nepal, esp. the countryside.

There are probably some innovative ideas,

materials, and techniques to do still more with it

And make it a more “competitive” technique for use in cities.

For example, using 3-4 mm plastic filament as raw material,

Made from plastic trash using an open-source filament maker like the Filabot.

The original Filabot design was open source.

It may not be anymore, but can easily be reverse-engineered.

(11) Producing e-bicycles

Electric bicycles are rarely seen in Nepal so far,

And there is a business opportunity for small manufacturing by upgrading normal bicycles into e-bicycles.

The most expensive part is usually the accumulator,

But one can use broken-down notebook accumulators for it.

They are usually available for free and >80% of their LiIon cells are still useful,

Although often with only 30% of their energy capacity and current carrying capacity remaining.

This however simply means a 3 times heavier accumulator,

Which is still acceptable for Li-Ion technology.

Also, by charging these batteries to only 3.92 V (70% of their capacity),

They can last for 3000-5000 cycles rather than 300-500,

Making them about 8 times cheaper again (per Watt-hour delivered).

(12) Producing cargo bicycles

Creating one’s own DIY cargo bicycle, to work better and faster than the three-wheeled ones seen around Kathmandu.

They can also be produced with electrical propulsion with minimal costs of ownership for the batteries

(see the point about producing e-bicycles for that).

Home Base Business Lead

(13) Producing electric tempos

There once were 600 electrical SAFA tempos in Kathmandu,

But operating them is difficult because battery depreciation costs about 100 USD/month,

Nearly as much as wage and electricity costs combined.

However, battery costs can be nearly eliminated by replacing the 36 deep-cycle lead-acid cells with a 21s Li-Ion configuration,

made from used Li-Ion cells from notebooks and power tools.

They would be charged to just 70% capacity (3.92 V/cell instead of 4.2 V/cell),

Which dramatically increases their cycle life from 300-600 to 1000-2000,

Giving the battery 5 times higher lifetime energy throughput than lead-acid.

Given that 18650 Li-Ion cells from broken notebook batteries have on average 3 Wh/cell left (at 4.2 V/cell)

And that just 1.7 Wh/cell are required for the same energy density as lead-acid batteries (which is 36 Wh/kg at 60% depth-of-discharge),

battery the same weight as the original lead-acid battery pack and charged to 3.92 V can carry the same energy.

By selecting cells with at least 4 Wh/cell (also easily possible),

A70% charge leads to 2.8 Wh/cell, which is a 50% range increase over lead-acid given the same battery weight.

So about 120 km/charge when assuming the data from SAFA tempos referred above.

Moreover, investment costs are further decreased by needing only one battery pack rather than two

As for SAFA tempos – Li-Ion batteries can be charged in about one hour to 70% rather than taking 12-16 hours as for lead-acid batteries.

(14) Glass handicrafts

Simple to do, even in remote areas, using a hydrogen flame (from PV powered electrolysis)

OR gasoline flame (as used by goldsmiths, with a simple “bubbling device” for gasification).

Allows recycling of glass waste.

Instructions have to include Innovative, proven designs for glass products.

For example, plates, cups, bowls, and other tableware.

And flat lids for canning, using collected glass jars and either a rubber ring or wax seal.

Also see: Top 50 Booming Business with Less Capital 

Home Base Business Lead

(15) Glass brick and glass shingle making

This transforms glass waste into useful raw materials for buildings.

Both would be useful to build greenhouses, and these greenhouses would last much longer than polytunnel.

And plastic roof versions, which quickly degrade from UV radiation.

(16) Water filter factory

Instruction on how to make ceramic water filters with local materials (clay, rice husk, and water) are found here.

These allow making water truck water and rainwater well drinkable –

Not possible with just chlorine/iodine due to algae and other dirt particles.

(17) Producing separating dry toilets

Very DIY, and it means no blackwater sewage is generated by the household.

Only relevant for urban (and of course rural) informal settlements,

Which are not connected to the sewage network at all.

Everyone whose house is connected (which are basically all houses in managed / residential areas in Kathmandu valley) is not interested in an off-grid toilet,

Since there do not seem to be recurring charges for wastewater disposal.

(18) Erasable notebooks for schools kids

Costs for notebooks and pencils is major cost parents have to bear for the education of their children, and often cannot.

Creating notebooks from plastic film “paper” (like Tyvek)

And pens with ethanol-based ink allow erasing them after writing by wiping with ethanol.

It would pay off in a month.

Home Base Business Lead

(19) Flow Hive beekeeping

See honeyflow.com for the Flow Hive, a “revolutionary” beehive that needs no centrifuges

Or other expensive and complex equipment for beekeeping.

On Alibaba, you can find many cheap Chinese imitations of the original FlowHive device –

For prices that are reasonable for Nepali beekeepers!

(20) Fruit walls on existing terraces

The vertical walls along terraced land are currently not used for anything,

But they are great as heat-retention “fruit walls” to grow fruit trees even where it would normally be too cold for them.

(21) Fruit wall mountains

Nepal has many barren mountains where nothing is grown due to a lack of soil and cold temperatures.

However, they can be transformed into “fruit wall mountains”.

Many of them are probably in protected areas though, where this would not be applicable.

See here how the concept of fruit walls was applied in Europe for hundreds of years.

(22) Bicycle powered grain mill

(23) Earth brick boxes from recycled plastic

Small companies in urban centers would create stackable plastic boxes from trash plastic that are then filled with earth

And stones and used as “earth bricks” for building houses in the villages.

The filling can be the same material as with earthbag buildings,

The container is just more durable and more earthquake-proof.

Similar to building with earthbags, these blocks must be able to settle over two years after being used in a building.

For that, it is enough if they can telescope down into the next lower layer of boxes,

With special Lego-style connectors to make interlocking layers still possible.

Optionally, one can use two rebars running vertically through each block,

Or lashing strap loops compressing a wall from top to bottom.

Blocks should let the water runoff at the outside rather than letting it run into the box.

Home Base Business Lead

(24) Earthquake-safe buildings from blocks of recycled plastic

The system was developed by Conceptos Plasticos in Columbia,

co-founded by Oscar Andres Mendez Gerardino in or before 2009.

It consists of interlocking, extruded blocks of plastic and slotted extruded beams of plastic.

All plastic comes from recycling plastic waste and can be mixed with plastic of various sorts. Information:

To improve the system, one could mix gravel and /

Or sand into the plastic as a filler material, increasing the number of blocks produced from the same amount of plastic by probably a factor of 3-4.

To further improve the system, blocks can be CNC milled out of extruded cuboid blocks.

This allows building anything with this system in a Lego-like system, including complex shapes like vaults.

(25) Plastic water tube from trash plastic

Rather than importing it, producing water tube is simple to do with domestic means

And properly sorted and cleaned trash plastic.

(26) Plastic particleboard

A simple way of recycling plastic into something useful,

By just melting and pressing finely ground plastic waste together between heated steel plates into particleboard.

It would not be a massive plastic sheet, but have many small air cavities,

But that is intentional. The product would still be a great building material for furniture, boxes etc..

Home Base Business Lead

(27) Bamboo reinforced plastic

Bamboo has long straight fibers that can be easily extracted (e.g. from trash pieces).

So by interlaying plastic film layers (e.g. from trashed plastic bags)

And bamboo fibers, with the fibers, turned 90° against the direction in the layer below,

One can create very sturdy sheet material,

Much more sturdy than if just using the plastic from the plastic bags.

At the same time, the material will be light

(lighter than massive plastic sheets) and resistant to rot, unlike bamboo itself.

(28) Add-on electrostatic air particle filter for trucks

Fast option for better air quality in Nepal:

Every large truck coming into the city will get a high voltage based air particle filter mounted to the exhaust,

And will have to hand it back when leaving the city.

Home Base Business Lead

(29) Mobile trash recycling unit

A 20 ft ISO container with equipment and workplaces to sort all kinds of trash, for proper reuse and recycling.

The unit would be put on a trash dump site, a wheeled loader would put in trash in one end,

And sorting results will be dumped into various heaps and smaller containers around the ISO container.

Results will be “for reuse”, “for reuse in parts”, various materials for reuse as raw materials.

(aluminum, steel, different plastics, copper, stones, glas),

And organics to use for methane generation and composting.

Sorted goods will then be cleaned and sold to manufacturers and scrap yards.

The advantage is that this container will offer safe workplaces, compared to poking around in the trash as done currently.

People will be completely isolated from the trash through climatized manipulator-like suits for the upper third of the body, accessible from the “trash-free” area below the surface to which they are mounted.

(30) Smog-filtering device that produces bricks

A smog-cleaning device that collects the smog dust and creates bricks from it.

This is meant for massive-scale outdoor air cleaning.

A device for this purpose has been developed in the Netherlands,

The additional idea is now to use the dust and burn it like bricks (possibly in a solar furnace).

This will cause the dust particles to sinter together, just like clay.

In this shape, they can be used as a normal building material.

This will be especially useful in cities with horrible air quality that also includes coarse dust, for example, Kathmandu.

(31) Street-sweeping cargo bicycle

The dust can perhaps be washed and then used as input for concrete, instead of sand.

(32) Biogas operated fridges

Biogas operated fridges for villages in Nepal.

That’s very simple, just use the LPG-operated camping fridges for that.

They can be built from cheap used components (small broken camping fridges, insulation material).

By using very thick walls (not a problem in villages as there is a lot of space),

One can create very energy-efficient fridges.

Ideally, natural materials would be used for the walls. See for how to do it:

An obvious improvement is power/cold/heat co-production:

Use the exhaust heat of a generator-driving combustion engine to drive the biogas fridge.

(33) Logistics platform

High Demanding Business

Both for ordering shipments within a city (like Kathmandu)

And for national and international shipments. Incl. co-shipment and automatic logistical optimization.

(34) Autonomous electric footpath vehicles

(35) Sky Bikes

These are enclosed, muscle-powered cable cars running on aerial ropeways.

They work by having two cables: one cable between hilltops,

Keeping up a horizontal second cable that runs 20-50 m lower

And is connected by vertical cables to the top one every 10 m or so.

Alternatively, the lower cable would be replaced by an aluminium square profile with a slot opening in the bottom, with rollers inside.

It is more expensive but makes the mechanism of connecting the sky bike much simpler and more secure.

In both cases, no pulling cable, electrical motor etc. is needed, as it’s all horizontal

And thus very fast and easy to travel on that cable.

Especially the aluminum profile version would provide a very smooth, horizontal ride.

The challenge is of course when using two cables, how to construct the system that suspends the sky bike from the steel cable above it,

Given that there are vertical cables in the way of driving forward, and that every 10 m.

One idea is to have multiple (4-7) pulleys on top of the sky bike,

With a special mechanism that allows to split them in the middle on-demand, to pass a vertical cable.

Another mechanism ensures that only one can be split/opened at any time,

Preventing the sky bike from falling down.

The splitting surface would be toothed and its outside grooved,

So that there is no realistic chance of accidental opening when closed,

Even when all closing force is missing.

As an additional security mechanism.

Home Base Business Lead

Each sky bike would pull two ropes with special triple carabiner hooks behind them which can pass the vertical cables in a similar manner:

only one carabiner can open at any given time.

The cable construction can be a loop so that the bikes can travel a full round trip,

With some in-store at each of the two end stations.

It would even be possible to route these ways alongside hills (suspended on posts).

Combining these two approaches, 10-30 km long “bike highways”

Can be built in the countryside that connects the village to the nearest road very fast.

It would also be possible for these cable cars to carry load suspended below them

(up to say, 600 kg total mass of the cable car, including the car, two people, and the load).

It is also possible to extend this idea to be a network of skybike routes where the driver is able to choose his own way.

This would use two pairs of hooks to connect to the cable.

Two hooks from the left side, two from the right side.

It has to be possible to switch the set automatically while driving.

With the hooks from the left side, one will go left at a Y junction,

With the ones from the right side, one will go right.

Another option for improvement is gas balloons, carrying most or all of the weight.

This allows to use of more lightweight steel cables, used just to pull the balloons,

Not to carry weight or secure against falling down.

The advantage is that this allows mass use of blimp-based logistics,

Since the wind sensitivity, ground handling etc. problems are all solved then.

But to make it usable for everyone, several changes have to be made.

The cables should be installed permanently, with hubs on 10 m towers on hilltops.

Because without rolling and unrolling the cables, they will last much longer.

The cables would be used to conduct electricity,

And the cable cars would have electrical motors and pull themselves along the cable.

There would only be one cable between two points, so travelling is not horizontal.

Changing direction by choosing a different cable can only happen at hub points.

Possibly, a lightweight aramide cable inside an aluminum profile with a toothed outside (for the balloon to draw itself along)

Would be the best combination of cable weight, UV resistance, abrasion resistance and conductivity.

It will be possible to use cheap hydrogen cluster balloons by letting them always float 30 m above the load (also great for avoiding ground contact with trees etc.).

The load would travel in the cable car which is hanging below the cable.

This will also allow to lower the load to the ground at any point during the journey.

Must see: 14 Tips to Start Oxter Guide Shields

Production 

Home Base Business Lead

(36) Airdrops with guided parachutes for shipping to remote villages

The idea is to use airdrops with guided parachutes of emergency supplies, urgent medical supplies

And as a normal parcel logistics system for remote villages in Nepal.

Of course, the same system can be used in to service any remote area worldwide.

For this to work, every village would have to designate and fence in a landing zone, ideally at a mountaintop.

The area should ideally be at least 100 × 100 m, but even 30 × 30 m should be sufficient when the system is mature.

The area would have to get some optical beacons and (if night operation is envisaged) some photovoltaics-powered LED beacons.

The parachutes would use these beacons during the final approach.

In addition, the area should have a soft surface. 50 cm of pine needles and small dry branches,

Kept dry on a foundation of gravel, will do the job for example.

An automatic system (or a person called before on the phone) would ring some bells before an airdrop,

So people in the area can leave for safety in time.

The “automatic system” for this could be as simple as a GSM phone number with a GSM device and loudspeakers at the drop zone.

One or two systems of GPS-guided parachutes are already in existence, developed for military applications.

This however would have to be a system of much lower cost, for rural developing areas.

This system would be quite cheap to operate, as normal fixed-wing aircraft can be used,

And they can drop the goods mid-air during normal passenger flights,

Not needing to fly close to the ground as with normal airdrops.

It could beat all alternatives (helicopter landings, drone delivery) by an order of magnitude.

Note that normal airdrops are currently not an option at all in steep mountainous terrain, due to the lack of precision.

(37) Carry balloons

These are hydrogen balloons, probably cluster balloons for simple.

And safe handling, that are attached to ones backpack or other load, or even to pack animals.

It would have enough lift to make carrying easier resp. to allow carrying more if one likes.

At the same time, the baloon must be small enough to allow safe handling in slight winds.

So probably, a 40 m³ balloon for 30-40 kg lift.

It is not clear yet how and where these would best be used.

Of course, using this is only possible on open terrain, not in the woods etc..

Maybe they would be used mostly for long-distance carrying to supply villages etc.,

But that will eventually be taken over by other means of transport because it also uses too much human time –

Except perhaps in combination with caravans of pack animals.

Another use would be in agriculture in mountainous regions, for carrying tools, harvest, soil, compost etc. to and from the fields.

Wheelbarrows do not work well in this terrain (too steep, too muddy), but carry balloons could.

The hydrogen would be created locally by water electrolysis, using excess photovoltaics energy.

(38) Chain bridges with pedal power

They could be improved by using chains instead of steel cables (more durable, less likely to be damaged,

And allowing traction) and bicycle pedals in the cable cars for pushing the car across,

With gears getting traction from the overhead chain.

More details about this solution are found in our project “Chain tuins to cross rivers in Nepal“.

(39) E-bicycles with salvaged LiIon batteries

DIY e-bicycles, made in series by a company, from overstock and recycled LiIon 18650 cell batteries.

The cost of a 500 Wh accu pack will be around 40 EUR then, or (say) 70 EUR incl. all casing, soldering etc..

In addition, one would make these battery packs swapable,

And build PV powered recharge stations on the way where one can simply swap the battery pack for a fresh one.

Together, this will allow going nearly twice as fast by bicycle uphill.

And downhill as by truck or bus (which is around 10 km/h off-road, as per experience values).

Still, the “fuel” is DIY produced in PV arrays.

In addition, the bicycle accu packs would also be used as backup battery during the night,

To power lights and computers when PV power is not available.

A 500 Wh Accu pack is fully sufficient for a family, as it would power a notebook for 50 hours for example.

(40) Slow-but-cheap international parcel service

A “slow parcel” service that combines parcels into LCL (less than container load) shipments from Nepal to Europe and the other way.

With forwarding within Nepal / within Europe by appropriate means.

This would be great to have for “very small businesses” to import and export.

(41) Using biogas as vehicle fuel

Like, research and instructions for converting a motorbike to biogas usage by attaching two LPG bottles with biogas at 20 bars.

Home Base Business Lead

(42) Foot passenger tunnels made with a micro road header

A roadheader is the most versatile tunnel digging machine currently in existence

They are used, among other things, for digging out underground homes in Coober Pedy, Australia.

The open hardware, small, CNC-controlled roadheader device seems quite doable.

The problem will probably be rather social issues with tunnels:

They are dark and will be considered “unsafe” esp. for women and children.

(43) Producing autospades for agriculture

More efficient than hoes, and does not require a plow.

Seemingly has not been introduced in Nepal yet.

They can easily be produced domestically in a small welding/metalworking workshop from scrap metal.

See also: 10 Tips to Start Gleaning Business Tips

(44) Producing bicycle-powered machines for agriculture

If to be used on the field, they can be made light enough to transport up and down hills,

In contrast to motorized machines (and electrical machines are excluded as there is no electricity in the field,

And if there was, then not enough … ok except with generators).

(45) Combined biogas fired / solar-powered food dehydrator

It should save energy by letting a batch of air saturate in humidity before exchanging it,

And by heating incoming air with exhaust air using

An air-to-air heat exchanger.

This device will allow drying food in harvest time close before monsoon, where the sun is usually scarcer.

Home Base Business Lead

(46) Hydraulic ram water pumps

There are many villages located on hills that have little potable water,

All while there is a river 200-400 m downhill.

But since they lack electricity and the finances to purchase pumps,

This water is not economically reachable.

However, the hydraulic ram provides a water-driven way to pump water up to 600 m uphill.

It is 25%-92% efficient.

(47) Making terraces into passive solar greenhouses,

For extended growing seasons

Passive solar greenhouses, built by using south-facing terraces,

Reusing the terrace wall for heat storage during the day.

See this detailed article for the concept.

(48) Bioethanol fuel for vehicles made with syngas fermentation in villages

Use village-scale syngas-fermentation process plants to create bioethanol fuel from cellulose biomass.

This process is esp. nice since it creates DIY biofuel that is simple and safe to handle and not environmentally detrimental if spilled.

Also, its production uses the biomass waste in villages (which is a lot),

So does not (have to) compete with food production.

And since the only input to the fermentation stage is gas, there is no sludge

Or other difficult to handle the output. In addition,

The biomass can be stored for the winter where the heat from partial combustion in syngas production can be used for space heating

And cooking (syngas production can be distributed, with small pipelines pumping it to a central fermenter;

This also allows cooking due to higher temperatures,

And it wastes no heat compared to a central gasifier and heat distribution via hot water pipes).

In addition, the syngas can also be used to directly operate generators for local electricity generation.

(it would be a waste to go through the ethanol process for this; and again, waste heat can be used for space heating via CHP).

Plus, one can do the ethanol distillation at no additional cost by doing it only in winter,

Using the gasification process waste heat and operating the distillation indoors in people’s homes,

Since this automatically reuses all distillation process heat for space heating.

So one would collect biomass throughout the year, building an excess of it in summer,

Where gasification is only done for electricity generation (and waste heat used for cooking).

In winter, where waste heat is needed also for space heating (and distilling),

More gasification is done to drive the ethanol process.

The end product (ethanol) is well storable, so seasonal storage is not a problem.

Also, this creates a work opportunity for the “slow part” of the agricultural year,

And even an income opportunity in winter, by selling the bioethanol.

Finally, by doing incomplete gasification, biochar is produced,

Which is a great fertilizer for soil (see “terra preta”).

One of the most interesting aspects is that this process can be economical for DIY production in villages.

Even if it is not economical on the global market or even for sale inside the country (yet).

Because it uses excess capacity (unused time due to lack of jobs, unused biomass).

In villages and results in avoiding to spend always-scarce money on fuel and fuel taxes.

Among the waste biomass in Nepali villages that can be used for this is pine needles from pine forests;

rice straw; cow dung; twigs; wood scraps; bamboo scraps; gras;

human feces (safe disposal compared to sludge from biogas generation).

In total, the process seems to integrate very well with life in Nepali villages, running fully on current excess/waste biomass while generating fuel for own consumption and sale to city dwellers.

It seems that this process is ready to be used (with future improvements coming through further research),

An initial proposal would be to avoid membrane bioreactors (due to expensive,

High-maintenance membranes are used to separate out a water/ethanol mix from the reactor to then obtain the ethanol by distillation and feedback the water).

Instead, use immobilized cell reactors in batch mode (“liquid batch, continuous gas”).

Use (say) ten batch vessels in parallel, with the syngas traveling first through the old batches (the bacteriae might still want to eat if offered concentrated food …) and then through the new batches.

The by-product acetic acid is inhibiting via its pH.

It might have to be removed by adding a base, causing the formation of solid acetate salts.

An interesting option for increasing the ethanol yield is adding acetate to ethanol’s two-step process afterward (as discussed here).

In total, however, commercialization has not yet been achieved of syngas fermentation for ethanol production, as discussed here.

This means it will be better to start with first-generation (sugarcane-based) ethanol production,

This is not a problem until it uses all currently unused land in rural Nepal.

This will yield the DIY distillation technology,

While employing biomass gasification for electricity production (CHP),

Space heating and cooking will yield the DIY gasification technology.

Research into the missing link (the fermentation step) can then be done in parallel.

Read also: 4 Science to Business Successes 

Home Base Business Lead

(49) Biogas and bioethanol as DIY automotive biofuels made in villages

The correct DIY fuel for vehicles in Nepal is definitely not biogas or syngas, but bioethanol and vegetable oils.

Biogas is fine for cooking and electricity generation though.

Villages already have the required tech for bioethanol, since they already produce Roxy

Ethanol is much simpler to handle (high energy density in storage)

And less dangerous (zero pressure during storage) and more or less a drop-in replacement for petrol.

Villages have mostly motorbikes, and these can run on bioethanol.

Buses and trucks will still need diesel (but that can be replaced with vegetable oil later).

Also, ethanol can replace LPG for cooking in the cities easily (with gasification burners being readily available).

This creates greater fuel independence in Nepal (politically wanted)

And at the same time creates an additional market for village products, increasing the economic viability of villages.

The challenge is to find plants that can be efficiently farmed manually on terraced farms,

Produce marketable food and bioethanol from the sugary remains of food production.

But when it all adds up, meaning farmers can make an attractive income from producing bioethanol,

The fields in villages will be all in use again,

And people will not have to emigrate that much since they can earn enough at home.

A tested and tried process would be sugarcane as an energy crop, as extensively used in Brazil.

Calculation of required area: In Brazil, current yields are 6000 l/ha of pure hydrous ethanol (E100), with 9000 l/ha targeted through further improvements.

With lower-tech but more manual labor for farming (usually increasing yield), 5000 l/ha seems possible.

Assuming two trips per week to the next city (4 x 30 km) per family, at 3.75 l / 100 km in a motorbike, this would need 127 l/year of ethanol, per family.

At 1000 people / 250 families for a typical village, this would need 31750 l, requiring 31750 l / 5000 l/ha = 6.35 ha of land, an area of 251 x 251 m. Or for each family, 63500 m² / 250 families = 254 m²/family, or 16 x 16 m, or one 42 x 6 m stripe on a terrace.

This is definitely doable. The mobility enabled by this is not “great”, but useful.

Public transport would of course be the normal mode of transportation,

But a motorbike will enable more flexibility when buses don’t go during monsoon season etc..

It is said that in the hilly area, there is only 0.05 ha (500 m²) per person of cultivated land.

Of this, 63.5 m² (13%) would be used for bioethanol production,

Which is quite a lot given that it competes with food crops.

Home Base Business Lead

However, reportedly there is now land falling barren in villages,

Since in many villages so many laborers emigrated that none are left to farm the land.

Attracting sugarcane production here is not a problem for food security, then.

It can become one when people migrate back to villages since employment options improve due to biofuel production.

So in total, it would be much better to produce biofuels that do not use upland.

When using sugarcane, the residue can be used for biomass gasification (syngas production),

For ethanol distillation (indoor, enabling waste heat reuse for space heating),

For cooking and electricity production (with CHP for waste heat reuse).

This way, sugarcane replaces firewood, avoiding detrimental effects on the local environment.

Still, it used up some arable land,

But as long as there is unused arable land (as now, and worsening), that is not a problem.

Another possible process could be using fruit trees (low maintenance “edible forests”) to create fruit juice.

Then create fruit bars, paper, etc. from the pulp, ferment the fruit juice,

And if needed keep it until the following year when there is enough sunshine again.

Then distill the ethanol out using a solar-powered distillation plant.

Use low temperatures, as that should allow to also use the remainder as fruit juice again (?)

Or for other purposes of nutrition. Also, sugarcane is a reasonable plant to use.

Home Base Business Lead

(50) Biogas drove small generator

A very small combination of an internal combustion engine and a generator, with (say) 100 W electrical output.

This is way enough for electricity needs in a rural village.

Run it for 3 hours a day, and operate a notebook and light bulbs throughout the day.

It would use 80 – 100 l biogas per hour to generate 100 W electrical output

Four-stroke model aircraft engines that can be converted to this are available for 150 USD (new).

Costco Business

(51) Biogas electricity plants for villages

A combination of biogas, a biogas based electricity generator, biogas storage facilities,

And photovoltaics is a reasonable solution for permanent electricity supply for villages.

In addition, syngas from biomass gasification would be used when not enough biogas is available.

(52) Charcoal fuelled generators

Box sized (for a family) or pallet-sized (for a village ward) generators that run on charcoal.

See EarthOS for the design.

Village people can then produce the charcoal as a side product whenever using a cooking stove or heating stove.

Ideally, the generator would use CHP (“combined heat and power”),

Producing space heating and even pre-heating for cooking as well, so hardly using additional fuel.

This allows electricity generation on-demand,

Lowering the required battery capacity for photovoltaics plants (thus making them cheaper).

The generator would have automatic start and stop, and automatically top up the batteries when needed.

Home Base Business Lead

(53) Electricity from pine needles

Using pine needles (and other currently unused biomass) in wood/biomass gasification, then driving generators with it. And cooking on the gasifier.

There should be small intermediate storage in an unpressurized gas envelope,

With a lot of free space around,

Just enough to keep a generator running for several hours after cooking (6-8 hours if cooking twice a day).

Storing larger amounts of carbon monoxide, esp if pressurized,

Is really dangerous (0.5% in the air is deadly in 10% of cases already).

The generator should start and stop automatically when power is needed,

Combined with a small battery backup which will supply power <50 W and higher power for a few seconds until the generator has started.

(54) Motorcycle fuel from DIY biogas plants

DIY biogas plants in villages with compression and use of the biogas in motorcycles.

This is done by:

(1) building a normal small biogas plant, as presenting villages in Nepal already,

(2) optionally converting the contained carbon dioxide to methane to ramp up the energy content,

By inserting hydrogen into the digestion process and letting the bacteria do their work (hydrogen would be created by electrolysis, using excess photovoltaics energy),

(3) cleaning the corrosive H2S from the biogas (bacteria can help),

(4) compressing it with a fridge compressor (can create up to 40 bars even,

(5) storing it in LPG bottles (they can hold 18-20 bars safely, One 15 kg LPG bottle has 30 l volume,

This means that at 20 bars, it can store 600 l biogas,

Or about 0.5 kg (if all is methane).

A motorcycle can carry two such bottles (one left, one right). At 4 kg / 100 km, that 1 kg would last just 25 km. However that fuel is free, and there is a village every 25 km for sure in Nepal,

And every village could have its bottle swap station.

The fuel would be inserted as a co-fuel into the air intake, and when running out of biogas after 25 km, petrol from the normal tank will be used.

See also: 23 Wedding Gown Rental Business Idea 

Home Base Business Lead

(55) Photovoltaics battery charging station for villages

Meant as a first, quick electrification measure, not as an ultimate or permanent solution.

There would be one photovoltaic plant in the center of the village or one per village ward,

Each plant with 3-6 kW(p) per 1000 people, mounted on a large central pillar,

Or the roof of a school, or similar.

Then, there would be a vending machine-style device that can be used to exchange discharged batteries to freshly charged ones, always 1:1, with proper detection that a battery is inserted and not a stone.

Of course, it would be better to do without batteries,

But even cabling throughout the village does not help since photovoltaics energy has to be available when there is no sun.

And then, when batteries are needed anyway,

It’s better to use them in a way that avoids the need for cabling (which is expensive to install, error-prone, and inefficient for low voltages).

Now everyone in the village will receive 2 batteries (18650 LiIon cells harvested from notebooks,

With added protection PCBs).

And the villagers can self-organize how to get discharged batteries exchanged for charged ones: either going there themselves,

Or sending a family member with batteries of the whole family,

Or having somebody walk the neighborhood with a special bell every day to exchange batteries on the spot (by wearing a set of, say, 100 charged batteries and exchanging them for discharged ones).

Possibly, the “manual solution” of somebody going around to exchange batteries can

Or should replace the vending machine, by simply giving that person exclusive access to the PV station’s charging chamber.

This “much” electricity (2*8 = 16 Wh per day when exchanging both cells) of course must be used very efficiently to be sufficient.

It is however enough for lighting via a brightness-adjustable headlamp and to power a smartphone,

FM radio and e-reader for some hours (via a USB power bank or by inserting the cell into a device made or modified to allow this).

In a second stage, there can be 24 V (6s or 7s configuration) battery packs containing many of these cells and being exchanged in a similar manner.

A notebook-sized 48 cell pack would contain about 300-400 Wh (when made from remanufactured, already weakened cells) and should allow to power a household’s home for 3-4 days with energy-efficient devices.

Even power drills etc. can now be used.

A business model can be developed on top of this:

Recharging individual cells would be free,

But for recharging the big battery packs people would have to contribute in kind (food, handicrafts items,

Cow manure for a biogas digester or similar).

Plus, excess electricity which will be available over the summer could be used to offer additional paid services.

Or machines for rent at the photovoltaics station: grain mills etc..

Home Base Business Lead

(56) Village ward biogas plants

One biogas plant per village ward, not per household.

Biogas would be delivered in uncompressed plastic bags, ca. 1 m³ per household per day.

This solves the problem that many households can’t afford a biogas plant –

A larger, combined plant (say, for 50-100 households) is much cheaper than 50-100 household-sized plants.

Alternatively to the gas bag delivery, a simple network of 30 mm diameter flexible plastic pipes (35 mbar pressure) could be set up.

People would have to deliver their biowaste to the plant (human manure, animal manure, veggie, and fruit scraps).

It would be delivered in buckets by the inhabitants (in the case of human manure, this limits the spread of infections).

If there are larger amounts, gravity-fed sleds can be built for animal manure and food scraps, starting at houses or central points.

Home Base Business Lead

(57) Metal 3D printing studio

It would use 3D printing in wax or CNC milling of wax models,

Then the traditional Newari lost-wax metal casting technique, in aluminum or bronze or tin (or whatnot).

See https://www.youtube.com/watch?v=FRSRCY2LzAU3 for a demonstration of that technique.

So the data would come from people (abroad, overseas, etc.),

The production would be done in Nepal,

And the finished objects would be sent as prepared and labeled parcel as co-shipment with tourist luggage to the international clients.

This would probably be a super well-running business, since,

It can offer to print huge metal models for super attractive prices,

Probably less than 10% of what it would cost at Shapeways etc..

Artists from all over the world, and also some people needing custom machined parts, would use the service.

Costco Business

(58) Pressure canned village food

Using pressure canning to cook and preserve local food (incl. full dishes) made in villages in Nepal.

This can then be transported to cities safely, and used as sauces, for ingredients, etc. in restaurants.

It can also be sold to tourists who love Nepali food and return home with a few cans of it (which routes around all the crazy food safety regulations one would have to deal with for regular export/import of such food).

Note that there are two different techniques: normal canning,

And pressure canning, which works at higher pressures and temperatures.

You need to look up which technique to use for which food to can it microbiologically safely,

And also the timings and temperature – usually fruits and other sour items can be canned, and meat, etc.

Has to be pressure canned. About the canning device:

The All American Pressure Canner is a suitable device for example since it can even be used on an open fire.

The Bonus List

After publishing the original 58 business ideas for Nepal, I had some more. So I’ll just keep adding to the list …

(59) Sell Nepali coffee to returning tourists

This means, set up a small roastery.

Get a roaster, scales, packaging equipment, a good label design.

Create good, original Nepali coffee, roasted and packaged in 250 g and 500 g packs (which are the most usual format in Europe).

For selling, have a stand at Tribhuvan International Airport in Kathmandu to sell to returning tourists.

This should include a billboard with information about coffee import regulations per destination country (esp. free-to-import amounts),

Free baggage limits per airline, and scales so people can find out how much they can buy to add to their baggage for free.

Tourists’ baggage as a means of transport for coffee for personal use works around the transportation cost problem for coffee exported from Nepal (which is currently only possible by air cargo for less-than-container loads).

It also works around the problem of customs,

Because normally exporting coffee only makes sense in larger amounts (>500 kg)

And then as green beans (as the large amounts usually can’t be sold fast enough for the coffee to keep fresh –

Roasted coffee stays fresh for at most two weeks).

Must see: 17 Viability For Sewing Business 

Home Base Business Lead

(60) Export psychedelic honey from Nepal to Europe

There is psychedelic rhododendron honey in Nepal,

Made known to the world by the VICE honey hunters documentary.

The fun part is that the customs of the European Union don’t know about psychedelic honey –

You can import and sell it as normal honey, not as a controlled psychoactive substance.

When doing that carefully and responsibly,

And telling customers exactly what they get and how to use it,

It is probable that this would be a sweet niche market with high margins for several years,

Until it might become forbidden or regulated.

(And if that happens, there are of course many other markets worldwide as alternatives.)

The proof (to the best of my knowledge but without any warranties)

That rhododendron honey from Nepal can be imported the same way as normal honey:

Have a look at the EU regulations for importing honey from Nepal in TARIC.

Basically, it means: when importing honey for resale, you need:

The veterinary certificate may go through a veterinary inspection, duty rate 17.5% (or 0% “development country preference rate” for the India / Nepal, etc. group of countries if the shipment value is >5000 EUR).

This seems to mean that there’s no controlled substance regulation for honey (psychedelic or not)

Because if there was, there would be a condition “restriction of entry into free circulation” as,

For example, for importing hemp seeds from Nepal.

There is already a (Kathmandu based) company selling that honey online now:

The Mad Honey. Their prices are really attractive for sellers,

Given that this honey is sold locally by those who harvest it for 1000 NPR/kg or similar (as reported by a friend who bought a few kilograms in Rukum or Rolpa district).

(61) Travel through Nepal’s villages and sell coffee farming machines

That is, sell small machines for coffee processing,

And teach farmers about coffee farming, and leave coffee farming manuals.

Farmers in Nepal need processing equipment.

And knowledge more than trade connections in order to be able to make a living from coffee farming,

Since prices are really high in Nepal when compared to other countries.

(62) Sell own handicrafts products on Etsy and DaWanda

This is part of the general principle that selling unique products on international markets can work,

Even though international shipment of small lots is prohibitively expensive for non-unique products.

Home Base Business Lead

(63) Become a remote web software moderator/admin

Nepal is becoming an attractive outsourcing location for computer work due to the good English skills of many in

Nepal, and the low wage level after considering the currency exchange rate.

The problem is how to find a foothold in this market as a freelancer/solo entrepreneur.

A recommendation is to look up modern, trending open-source software packages that are used by large community sites, forums, and social networks.

For example, potentially the world’s most advanced open source forum software.

(We also use it right here on this website.) By looking at open-source software only, you can be sure that

(1) it will be in widespread use and

(2) you can learn it without paying any money because you can install it on your own computer for free.

Note that this work does not require programming skills.

If you can work well with complex software like Microsoft Word,

You can become a Discourse moderator.

That work consists of sorting and tagging content, moderating discussions,

Deleting spam posts and spam users, offensive posts, etc..

You can then further extend your skills (and increase your pay) later on by learning Discourse admin tasks:

Handling backups, repairing the database, managing e-mail problems, learning Ruby console

To extract information from the database and script/program custom changes to content and settings etc..

So after you selected the software package you want to specialize in,

And learned all the basics on your own from online materials,

You can then look for sites using that software.

And approach them as a potential addition to their team.

Most of the organizations behind these sites will not.

Even have thought about outsourcing work to other countries,

But when you explain it well to them and demonstrate your skills,

It will be attractive for many of them.

Because a freelance consultant working over the Internet from Nepal as a web software moderator and admin is at least three times cheaper than their local staff in Europe or USA.

I assume that for a well-experienced Discourse admin from Nepal, for example,

An hourly rate of 7 USD is realistic (not for a novice, for somebody with at least 3 years experience).

To find out which website is based on the software package you specialized in,

You can use web framework detector tools like Built WithWappalyzer,

What CMS? and Guess CMS Detector.

(64) Outsourcing agency for web platform moderation/administration

Building on the last business idea (no. 63),

It is of course also possible to transform a solo web moderator business into an agency.

By training employees in Nepal in the moderator and admin skills you acquired.

A bit like Cloud Factory2 (a great startup from Nepal actually!) but more specialized and on a much smaller scale.

Home Base Business Lead

(65) Produce GoSol solar cookstoves, dehydrators, ovens, and roasters

The GoSol SOL devices are a proven and tested technology for direct solar thermal use.

Like the solar stove devices that have been around for a decade, but much more powerful (up to 6 kW) and they actually work.

This is applicable for all areas in Nepal with a lot of direct sunlight (means, little cloud cover)

And little firewood for fuel. So especially for the trans-Himalayan highlands.

In addition, the technology is also useful for commercial operators in cities,

For example coffee roasters and food processors (fruit dehydration etc.).

The rooftop terraces are an obvious choice of location.

For commercial use in cities, fully automated operation would be desirable,

As human work time is more expensive in cities.

Which would be a nice addition to the GoSol technology.

For roasters, you could base this automatic solution on the open-source Artisan Roaster Scope software,

Combined with Arduino TC4 boards to actually control the roaster’s fan and heater.

Add in some nice weather forecast incl.

Cloud cover prediction so the roaster knows when there is enough sun in the next 20 minutes to start roasting a batch.

This can be built on top of OpenWeatherMap,

Which provides a 5-day forecast with 3-hour granularity, and updates every 3 hours.

Home Base Business Lead

(66) Open source optical sorter for coffee beans (or nuts etc.)

A small-scale, cheap optical sorter for green coffee beans and possibly other agricultural products.

You can build a coffee processing business out of this (much better than sorting coffee by hand as usual).

Or you could produce and sell these machines in Nepal, as the design will be open source.

First, we have to develop this machine together, though.

For that, and all other details, head over to my initiative to get this machine funded and built.

Welcome to get involved (this project is actually happening now!).

Home Base Business Lead

(67) Traffic jam bicycle

Essentially a new, faster means of transportation in Kathmandu:

A bicycle that is optimized for driving through traffic jams.

It would be faster than all other means of transport in Kathmandu during peak traffic times

And probably during most of the day.

To be fast, it can be a powerful electric bicycle, but the concept can also work purely mechanically.

Its features would be a narrow handlebar,

Thick foam cushioning on all outer surfaces to not scratch vehicles,

And a vertical rotating flywheel to provide high stability when driving very slow between vehicles.

In addition, a saddle that can be lowered with the touch of.

A button to be able to balance the bicycle with the feet on the ground when slipping through between vehicles;

Afterward, one would flip the button again and the saddle would move up again to a mechanical upper limit.

This would be provided by compressed air from a mechanical wheel hub air compressor that can be pumped into.

And let out of a “normal” cushioned saddle tube.

Home Base Business Lead

(68) Mountain farming on newly deposited soil

This idea is for those looking for an “extreme farming” challenge.

Due to the changing climate, many mountain areas that were too cold to cultivate anything are now potential locations for farming.

There are huge tracts of land in the wider Himalaya area that are completely unused and barren, with no competition for using or owning them.

Their big problem is of course that still nothing grows because there is no soil:

There is also an upper limit to how far plants can move [uphill] since there is no topsoil at extreme altitudes to support plant life.

But soil is just compost mixed with pulverized stones and ideally biochar,

In the right quantities. So if we transport biomass from the closest location that has it (which may be in the valley near a river),

create the crushed stones on-site, and mix it, we have the soil.

Home Base Business Lead

Now it has to be deposited in an erosion-resistant way (in pits, ditches, and human-made or natural terraces),

which is obviously a lot of work and requires a small excavator with a hydraulic jackhammer.

And then more work for solutions that direct the rainwater to the plants, and store it where needed.

But it’s rewarding: climate change can be used to increase the available farmland

And also the land available for wild plants and animals.

Leave a Reply

Your email address will not be published. Required fields are marked *